Extending the Classification Paradigm to Temporal Domains
نویسنده
چکیده
One of the primary areas of machine learning research has been supervised concept learning given some information about examples whose class is known, the goal is to produce a classifier which can classify examples whose class is not known. In general, research in this area has focused on situations where an object’s attributes do not change in the short term. However, in many real-world domains, such as speech, sign language, robotics and medicine, many of the classification tasks involve dynamic attributes. Furthermore, temporal properties are critical to classification. The current work involves developing a temporal classification learner that works in a variety of domains, does not require excessive amounts of data and is able to produce comprehensible descriptions of the concepts, while still having high predictive accuracy.
منابع مشابه
Assessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran
Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...
متن کاملPhoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain
This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...
متن کاملStatistical Analysis on IoT Research Trends: A Survey
Internet of Things (IoT) is a novel and emerging paradigm to connect real/physical and virtual/logical world together. So, it will be necessary to apply other related scientific concepts in order to achieve this goal. The main focus of this paper is to identify the research topics in IoT. For this purpose, a comprehensive study has been conducted on the vast range of research articles. IoT conc...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملTemporal Classification: Extending the Classification Paradigm to Multivariate Time Series
Machine learning research has, to a great extent, ignored an important aspect of many real world applications: time. Existing concept learners predominantly operate on a static set of attributes; for example, classifying flowers described by leaf size, petal colour and petal count. The values of these attributes is assumed to be unchanging – the flower never grows or loses leaves. However, many...
متن کامل